for flooders
:: Главная :: Решения :: Статьи :: Сайт М. Дроздова :: Файловый архив :: Книга по VFP 9 :: Русский Help Online :: OFF-LINE Форум
   Л и с о в о д ы   в с е х   с т р а н,  о б ъ е д и н я й т е с ь !!!  

Список Форумов  :: Игры Разума
   :: Помощь сайту :: 

Re: маленькая задача
Igor Korolyov

Сообщений: 32376
Дата: 22.04.07 02:13:14ОтветитьЦитировать
Hi PaulWist!

Даже для плоских фигур гипотеза о "равных массах в вершинах" неверна - возьми к примеру квадрат и "отломай" небольшой кусочек от одного из углов - получится что этот "угол" сразу станет в 2 раза тяжелее, т.к число реальных углов там удвоится

Насчёт 1.06 - ты просто поставил это после цитаты про
Цитата:
координаты центра тяжести основания будут в точке (a,a)
потому я и воспринимал это как координату (причём в изначальной системе координат), а не расстояние (или координату в системе координат повёрнутой на 45 градусов)

Так же ты не прав считая что центр тяжести трапеции лежит на её срединной линии - он на самом деле находится ниже (трапеция снизу "шире" и потому "тяжелее") - а срединная линия это лишь граница - очень грубая оценка точки ниже которой и будет находится центр тяжести. Впрочем и вторая граница (собственно большее основание трапеции) тоже очень грубая оценка Будем надеятся что Леонид таки нашёл точную формулу.

Насчёт независимости устойчивости пирамиды (только такого типа!) от высоты - это вытекает из свойств проекций - если точка делит отрезок в соотношении 3/4, то проекция точки будет делить проекцию отрезка в таком же соотношении - а мы как раз и рассматриваем проекцию отрезка соединяющего вершину с центром тяжести основания на координатную плоскость Oxy - это как раз и будет отрезок соединяющий центр тяжести трапеции с началом координат. Это я разъясняю для тех кто не понял какие же размышления посетили тебя

2 Леонид
Хм, IMHO тут не нужны рисунки - тут нужна формула для расчёта координат центра тяжести трапеции - точнее "высоты" центра тяжести по отношению к высоте трапеции. Дальнейшие преобразования уже тривиальны...


------------------
WBR, Igor
Ratings: 0 negative/0 positive

Re: маленькая задача
leonid

Сообщений: 2594
Откуда: Рига
Дата: 22.04.07 11:07:21ОтветитьЦитировать
В двух словах, схема рассчета центра тяжести трапеции такая: во-первых он должен лежать на оси симметрии трапеции (отрезок, соединяющий центры оснований), а во вторых он должен лежать на отрезке, соединяющем центры тяжести двух треугольников, на которые трапеция разбивается диагональю. Все остальное - уже техника.
Ratings: 0 negative/0 positive

Re: маленькая задача
Igor Korolyov

Сообщений: 32376
Дата: 26.04.07 15:22:42ОтветитьЦитировать
Hi leonid!

Я таки нашёл формулу тут mathworld.wolfram.com

x = h*(b+2*a)/(3*(a+b)) (где а большее основание, h - высота)

Видимо она и следует из твоих посылок (чес слово выводить ну совсем неохота)... А далее уже всё действительно сравнительно просто

P.S. Кстати есть другой (возможно более простой) способ расчёта координат центра тяжести для ТАКОЙ пирамиды. И как раз расположенной ТАКИМ образом на координатной плоскости Для этого надо рассмотреть 2 треугольника: больший от начала координат до большего основания и меньший - от начала координат до меньшего основания. Тогда центр тяжести трапеции рассчитывается по формуле для центра масс системы N=2 тел, из которых "меньшее" берётся с отрицательной массой (и то правда, мы же по сути "отрезаем" от большего треугольника меньший).
Тогда получаем:
x = sum(m(i)*x(i))/sum(m(i))
или в нешем случае, учитывая формулу для координат центра тяжести прямоугольного треугольника:
x = ((b^2/2) * (b/3) - (a^2/2) * (a/3))/((b^2/2) - (a^2/2)) = (b^2+ab+a^2)/(3*(a+b))
y - идентично, впрочем нам достаточно рассматривать лишь проекцию на одну ось координат.
Координаты (проекция на Ox) центра тяжести всей пирамиды соответственно эта функция * 3/4
Координаты граничной точки устойчивости (это точка лежит на меньшем основании трапеции) - x=a/2
Соответственно сводим всё в одно неравенство (формула устойчивости):
(3/4)*(b^2+ab+a^2)/(3*(a+b))>a/2
Как я понимаю, решив это квадратное неравенство мы и получим твою "точную" формулу


------------------
WBR, Igor
Ratings: 0 negative/0 positive



Извините, только зарегистрированные пользователи могут писать в этом форуме.

On-line: 106 finskl  and Guests: 105


© 2000-2019 Fox Club 
Яндекс.Метрика